Diterpenes and Diterpene Glucosides from Phlogacanthus curviflorus

by Guo-Fang Lai^a)^b), Xian-You Wang^a), Yi-Fen Wang^{*a}), Jian-Xin Cao^a), Shi-De Luo^a), and Peng Ju

^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China

(phone: +86-871-5223097; fax: +86-871-5223038; e-mail: wangyifen@mail.kib.ac.cn).

The four new diterpene and diterpene glucosides $\mathbf{1}-\mathbf{4}$, the new bergamotene derivative $\mathbf{5}$, and the two new iridoid monoterpenoid glucosides $\mathbf{6}$ and $\mathbf{7}$, together with the eleven known compounds $\mathbf{8}-\mathbf{18}$, were isolated from the EtOH extract of the roots of *Phlogacanthus curviflorus*. On the basis of chemical and spectroscopic evidence, their structures were identified as $(4\alpha,5\beta,10\alpha,14\alpha)$ -14,19-dihydroxyabieta-8,13(15)-dieno-16,12-lactone 19-(β -D-glucopyranoside) (=curvifloruside A; $\mathbf{1}$), $(4\alpha,5\beta,10\alpha,14\alpha)$ -14,19-dihydroxyabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxybenzoyl)- β -D-glucopyranoside] (=curvifloruside B; $\mathbf{2}$), $(4\alpha,5\beta,10\alpha)$ -19-hydroxy-14-oxoabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxybenzoyl)- β -D-glucopyranoside] (=curvifloruside C; $\mathbf{3}$), 19-hydroxy-jolkinolide E ($\mathbf{4}$), 9-oxo- α -bergamoten-1-yl β -D-glucopyranoside (=curvifloruside D; $\mathbf{5}$), 6-deoxyharpagoside (=curvifloruside E; $\mathbf{6}$), and 6-epiharpagoside (=curvifloruside F; $\mathbf{7}$). This is the first report on sesquiterpene and iridoid glycosides from the *Phlogacanthus* genus.

Introduction. – The genus *Phlogacanthus* of the Acanthaceae comprises about 30 species in the world and is mainly distributed in India and Malaysia. There are 4 species, including *P. curviflorus*, in China [1]. *Phlogacanthus curviflorus* (Wall) Nees is a shrub distributed in Yunnan Province of China as well as in Vietnam and India [2]. Its roots are used for the treatment of malaria [3]. A number of chemical constituents has been isolated from some species of *Phlogacanthus*, *e.g.*, diterpene lactones and their glucosides, steroids, and triterpenes [4–8]. Recently, two diterpenes and three diterpene glucosides have been isolated from the roots of *P. curviflorus* [9]. However, these references only reported on the diterpenes and their derivatives from several species, but there exists no report on biological studies of these compounds. In this study, four new diterpene and diterpene glucosides, one new bergamotene-derived glucoside, and two new iridoid monoterpenoid glucosides, together with eleven known compounds, were isolated from the EtOH extract of the roots of *P. curviflorus*. Their structures were identified on the basis of chemical and spectroscopic evidences. This is the first report on sesquiterpene and iridoid glycosides from the *Phlogacanthus* genus.

Results and Discussion. – After repeated column chromatographic purification on silica gel, the EtOH extract of the aerial part of *P. curviflorus* afforded the seven new compounds $1-7^1$) and eleven known compounds, *i.e.*, $8-18^1$).

b) Yunnan Institute of Food and Drug Control, Kunming Yunnan 650011, P. R. China

¹⁾ Trivial or arbitrary atom numberings; for systematic names, see Exper. Part.

MeÓ

Curvifloruside A¹) (1) was obtained as an amorphous solid. Its molecular formula was determined as $C_{26}H_{38}O_9$ on the basis of the quasimolecular-ion peak at m/z 493.2448 ($[M-H]^-$) in the HR-FAB-MS (neg.). The IR spectrum suggested the presence of OH groups (3430 cm⁻¹), and the absorptions at 1735 and 1636 cm⁻¹, and the 13 C-NMR signals at δ 177.4, 163.7, and 121.7 (*Table 1*) revealed the presence of an α,β -unsaturated γ -lactone. The 1 H-NMR spectrum of 1 (*Table 1*) showed the presence of three quaternary Me groups at $\delta(H)$ 1.05, 1.06, and 1.96 (each s). Acid hydrolysis of 1 afforded D-glucose and the known aglycone 8 [9], which were detected by TLC with

Table 1. ${}^{I}H$ - and ${}^{I3}C$ -NMR Data (400 and 100 MHz, resp.) of Compounds 1 and 4 I). δ in ppm, J in Hz a).

	1 ^b)		4 °)	
	$\delta(\mathrm{H})$	δ(C)	$\delta(\mathrm{H})$	δ(C)
CH ₂ (1)	$0.95 (ddd, J = 13.6, 12.6, 3.8, H_a),$	37.2 (t)	$1.01-1.03 \ (m, H_a),$	37.6 (t)
	$1.57 - 1.58 \ (m, H_{\beta})$		$2.10-2.11 (m, H_{\beta})$	
$CH_2(2)$	$1.91-1.92 (m, H_a),$	19.8(t)	$0.85 - 0.86 (m, H_a),$	26.5(t)
	$1.61-1.62 \ (m, H_{\beta})$		$1.16 - 1.18 \ (m, H_{\beta})$	
$CH_2(3)$	$1.81 - 1.83 \ (m, H_a),$	37.0(t)	$2.21-2.23 (m, H_a),$	43.9(t)
	$1.10 \ (ddd, J = 13.6, 13.6, 3.8)$		$0.81 - 0.82 \ (m, H_{\beta})$	
C(4)		39.4(s)		40.3(s)
CH(5)	1.29 $(d, J = 12.6, H_{\beta})$	53.8(d)	1.34 $(d, J = 12.6, H_{\beta})$	55.3 (d)
$CH_2(6)$	$1.44 - 1.45 \ (m, 2 \ H)$	19.5(t)	1.25-1.26 (m),	23.6(t)
			$1.87 - 1.89 \ (m)$	
$CH_2(7)$	$1.98-2.00 (m, H_a),$	30.1(t)	$2.10-2.11 (m, H_a),$	37.1(t)
	$2.41-2.43 \ (m, H_{\beta})$		$2.48 (d, J = 13.8, H_{\beta})$	
C(8)	•	130.9(s)	,	151.1(s)
C(9) or CH(9)		138.8(s)	2.27 (dd, J = 12.6, 6.6)	51.7 (d)
C(10)		38.9(s)		42.5(s)
$CH_2(11)$	$1.76-77 \ (m, H_a),$	33.4 (t)	$1.54 - 1.55 (m, H_a),$	27.4(t)
	$2.89 (dd, J = 14.9, 6.3, H_{\beta})$		$2.56 (dd, J = 13.6, 6.5, H_{\beta})$	
CH(12)	4.75 (t, J = 8.6)	77.7(d)	4.95 (dd, J = 9.3, 3.5)	75.9(d)
C(13)		163.7(s)		156.2(s)
CH(14)	4.93 (s, H_{β})	70.8(d)	6.23(s)	114.5(d)
C(15)	•	121.7(s)		116.4 (s)
C(16)		177.4(s)		175.7(s)
Me(17)	1.96(s)	9.1(q)	1.76 (s)	8.0(q)
Me(18)	1.05(s)	28.1(q)	0.96(s)	27.5(q)
$CH_2(19)$	4.20 (d, J = 9.6),	73.8(t)	3.26 (d, J = 11.3),	64.5(t)
	4.08 (d, J = 9.6)		3.60 (d, J = 11.3)	
Me(20)	1.06(s)	19.7(q)	0.88(s)	18.4(q)
CH(1')	4.69 (d, J=7.8)	104.9(d)		
CH(2')	3.32-3.34 (m)	75.2(d)		
CH(3')	3.30-3.31 (m)	78.3(d)		
CH(4')	3.28-3.29 (m)	71.7 (d)		
CH(5')	3.20 (t, J = 8.8)	78.8 (d)		
$CH_2(6')$	3.86 (dd, J = 11.8, 2.3),	62.8 (t)		
	3.68 (dd, J = 11.8, 5.3)			

^{a)} The assignments were based on 1H , 1H -COSY, HMQC, and HMBC experiments. b) Recorded in C_5D_5N . c) Recorded in CDCl $_3$.

reference samples. Besides the signals for the β -D-glucopyranosyl group, 20 C-atom signals were observed in the ¹³C-NMR spectrum of 1, including those of three Me and one CH₂OH group, indicating an abjetane diterpene structure containing an $\alpha\beta$ unsaturated γ -lacton moiety. Comparison of the ¹³C-NMR data of **1** with those of the corresponding aglycone pholgacantholide C (8) [9] showed a close agreement, pointing to 1 being the glucoside of pholgacantholide C. The correlation $\delta(H)$ 4.69 (H-C(1'))/ $\delta(C)$ 73.8 (C(19)) in the HMBC experiment showed that the β -D-glucopyranosyl moiety must be located at C(19). This was consistent with C(19) being shifted from δ 64.2 in 8 to 73.8 in 1. Most of the structure of 1 was elucidated by HMBC and NOESY experiments (Fig. 1). To discriminate lactonization between C(16) and C(12) from lactonization between C(16) and C(14), **1** was acetylated to give a diacetate **9** identical to that described in [9]. The HMBC between H-C(14) and the C=O(Ac) of 9 formed by acetylation of OH-C(14) of 1, suggested the lactonization in 9 between C(16) and C(12). The relative configuration at C(14) of 1 was elucidated by a NOESY correlation between H-C(14) and $H_{\beta}-C(7)$ (Fig. 1). Consequently, the structure of curvifloruside A (1) was elucidated as $(4\alpha,5\beta,10\alpha,14\alpha)-14,19$ -dihydroxyabieta-8,13(15)-dieno-16,12lactone 19-(β -D-glucopyranoside)¹).

HMBC ROESY

Fig. 1. Key HMBC and ROESY correlations of 1

Curvifloruside B¹) (**2**) was obtained as an amorphous solid. Its molecular formula was determined as $C_{35}H_{46}O_{13}$ on the basis of the quasimolecular-ion peak at m/z 673.2869 ($[M-H]^-$) in the HR-FAB-MS (neg.). The IR spectrum showed the presence of OH groups (3441 cm⁻¹), an α,β -unsaturated γ -lactone (1732 cm⁻¹), and an aryl group (1612, 1549, and 1461 cm⁻¹). The ¹H-NMR spectrum ($Table\ 2$) displayed the signals of three quaternary Me groups at $\delta(H)\ 0.99$, 1.11, and 2.21 (each s), two MeO units at 3.78 (s, 6 H), two CH-O groups at 4.83 (dd, J = 6.6, 5.0 Hz) and 5.00 (s), and 2 aromatic H-atoms at 7.75 (s). On the other hand, the ¹³C-NMR signals ($Table\ 2$) at $\delta(C)$ 120.9 (s), 108.7 (2 d), 148.6 (2 s), and 142.7 (s) indicated that **2** is endowed with a symmetrical tetrasubstituted benzene moiety. From the HMBC experiment, this moiety was determined to be a 4-hydroxy-3,5-dimethoxybenzoyl group. Comparison of the ¹H- and ¹³C-NMR spectral data of **2** and **1** revealed that **2** was an O-acylated product of **1**. The correlations $\delta(H)\ 5.09\ (H-C(1'))/\delta(C)\ 75.6\ (t, C(19))$ and $\delta(H)\ 5.92\ (H-C(2'))/\delta(C)\ 166.2\ (C(7''))$ in the HMBC experiment indicated that the glucosyl

Table 2. ${}^{1}H$ - and ${}^{13}C$ -NMR Data (400 and 100 MHz, resp.) of Compounds 2 and 3 1). δ in ppm, J in Hz a).

$\begin{array}{c} \text{CH}_{2}(1) & 0.68 \ (t, J = 12.7, \text{H}_{\alpha}), \\ 1.44 - 1.45 \ (m, \text{H}_{\beta}) \\ \text{CH}_{2}(2) & 1.53 - 1.54 \ (m, \text{H}_{\alpha}), \\ 1.86 - 1.88 \ (m, \text{H}_{\beta}) \\ \text{CH}_{2}(3) & 1.45 - 1.47 \ (m, \text{H}_{\alpha}), \\ 0.84 \ (dd, J = 13.1, 3.7, \text{H}_{\beta}) \\ \text{CH}_{5}(5) & 0.98 \ (d, J = 12.6, \text{H}_{\beta}) \\ \text{CH}_{2}(6) & 1.23 - 1.24 \ (m), 1.45 - 1.47 \ (m) \\ \text{CH}_{2}(7) & 1.57 \ (dd, J = 13.1, 6.2, \text{H}_{\alpha}), \\ 2.43 - 2.44 \ (m, \text{H}_{\beta}) \\ \text{C}(8) & 36.0 \ (t) \\ 1.20 - 1.21 \ (m, \text{H}_{\alpha}), \\ 1.20 - 1.21 \ (m, \text{H}_{\alpha}), \\ 1.30 - 1.31 \ (m, \text{H}_{\beta}) \\ 1.30 - 1.31 \ (m, \text{H}_{\beta}) \\ 1.20 - 1.23 \ (m, \text{H}_{\beta}) \\ 1.21 - 1.23 \ (m, \text{H}_{\beta}) \\ 1.22 - 1.24 \ (m, \text{H}_{\alpha}), \\ 1.243 - 2.44 \ (m, \text{H}_{\beta}) \\ 1.21 - 1.22 \ (m, \text{H}_{\beta}) \\ 1.21 - 1.22 \ (m, \text{H}_{\beta}) \\ 1.22 - 1.22 \ (m, \text{H}_{\beta}) \\ 1.23 - 1.24 \ (m, \text{H}_{\beta}) \\ 1.24 - 1.24 \ (m, \text{H}_{\beta}) \\ 1.25 - 1.25 \ (m, $	$\delta(C)$ 36.3 (t) 20.4 (t)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.4 (t)
$\begin{array}{c} \mathrm{CH}_{2}(2) & 1.53 - 1.54 \ (m, \mathrm{H}_{a}), \\ 1.86 - 1.88 \ (m, \mathrm{H}_{\beta}) & 1.32 - 1.33 \ (m, \mathrm{H}_{\beta}), \\ \mathrm{CH}_{2}(3) & 1.45 - 1.47 \ (m, \mathrm{H}_{a}), \\ 0.84 \ (dd, J = 13.1, 3.7, \mathrm{H}_{\beta}) & 1.30 - 1.31 \ (m, \mathrm{H}_{\beta}), \\ \mathrm{C}(4) & 37.6 \ (s) & \\ \mathrm{CH}(5) & 0.98 \ (d, J = 12.6, \mathrm{H}_{\beta}) & 52.5 \ (d) & 1.12 \ (d, J = 12.3, \mathrm{H}_{\beta}), \\ \mathrm{CH}_{2}(6) & 1.23 - 1.24 \ (m), 1.45 - 1.47 \ (m) & 19.0 \ (t) & 1.51 - 1.53 \ (m), \\ & & & & & & \\ \mathrm{CH}_{2}(7) & 1.57 \ (dd, J = 13.1, 6.2, \mathrm{H}_{\alpha}), \\ & & & & & & \\ \mathrm{C}(8) & & 131.3 \ (s) & & \\ \end{array}$	
$\begin{array}{c} 1.86-1.88 \ (m, H_{\beta}) \\ \text{CH}_2(3) \\ 1.45-1.47 \ (m, H_{\alpha}), \\ 0.84 \ (dd, J=13.1, 3.7, H_{\beta}) \\ \text{CH}_5(5) \\ \text{CH}_2(6) \\ 1.23-1.24 \ (m), 1.45-1.47 \ (m) \\ \text{CH}_2(7) \\ 1.57 \ (dd, J=13.1, 6.2, H_{\alpha}), \\ 2.43-2.44 \ (m, H_{\beta}) \\ \text{CH}_3(6) \\ 1.31.3 \ (s) \\ \end{array} \begin{array}{c} 1.32-1.33 \ (m, H_{\beta}) \\ 0.93-0.95 \ (m, H_{\alpha}), \\ 1.30-1.31 \ (m, H_{\beta}) \\ 52.5 \ (d) \\ 1.12 \ (d, J=12.3, H_{\beta}) \\ 1.51-1.53 \ (m), \\ 1.82-1.83 \ (m) \\ 1.91-1.92 \ (m, H_{\alpha}), \\ 1.91-1.92 \ (m, H_{\beta}) \\ \end{array}$	
$\begin{array}{c} 1.86-1.88 \ (m, H_{\beta}) \\ \text{CH}_2(3) \\ 1.45-1.47 \ (m, H_{\alpha}), \\ 0.84 \ (dd, J=13.1, 3.7, H_{\beta}) \\ \text{CH}_5(5) \\ \text{CH}_2(6) \\ 1.23-1.24 \ (m), 1.45-1.47 \ (m) \\ \text{CH}_2(7) \\ 1.57 \ (dd, J=13.1, 6.2, H_{\alpha}), \\ 2.43-2.44 \ (m, H_{\beta}) \\ \text{CH}_3(6) \\ 1.31.3 \ (s) \\ \end{array} \begin{array}{c} 1.32-1.33 \ (m, H_{\beta}) \\ 0.93-0.95 \ (m, H_{\alpha}), \\ 1.30-1.31 \ (m, H_{\beta}) \\ 52.5 \ (d) \\ 1.12 \ (d, J=12.3, H_{\beta}) \\ 1.51-1.53 \ (m), \\ 1.82-1.83 \ (m) \\ 1.91-1.92 \ (m, H_{\alpha}), \\ 1.91-1.92 \ (m, H_{\beta}) \\ \end{array}$	20.0 ()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0 ()
$\begin{array}{c} 0.84 \ (dd, J = 13.1, 3.7, \mathrm{H}_{\beta}) & 1.30 - 1.31 \ (m, \mathrm{H}_{\beta}) \\ \mathrm{C}(4) & 37.6 \ (s) \\ \mathrm{CH}(5) & 0.98 \ (d, J = 12.6, \mathrm{H}_{\beta}) & 52.5 \ (d) & 1.12 \ (d, J = 12.3, \mathrm{H}_{\beta}) \\ \mathrm{CH}_{2}(6) & 1.23 - 1.24 \ (m), 1.45 - 1.47 \ (m) & 19.0 \ (t) & 1.51 - 1.53 \ (m), \\ & & & & 1.82 - 1.83 \ (m) \\ \mathrm{CH}_{2}(7) & 1.57 \ (dd, J = 13.1, 6.2, \mathrm{H}_{\alpha}), \\ & & & 2.43 - 2.44 \ (m, \mathrm{H}_{\beta}) & 1.91 - 1.92 \ (m, \mathrm{H}_{\beta}) \\ \mathrm{C}(8) & & 131.3 \ (s) & & 1.30 - 1.31 \ (m, \mathrm{H}_{\beta}) \\ & & & & & & & & & & & & & & & & & & $	38.2(t)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.6 (s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.8 (d)
CH ₂ (7) 1.57 $(dd, J = 13.1, 6.2, H_{\alpha})$, 29.9 (t) 1.74 – 1.76 (m, H_{α}) , 2.43 – 2.44 (m, H_{β}) 1.91 – 1.92 (m, H_{β}) C(8) 131.3 (s)	19.5 (t)
$2.43-2.44 \ (m, H_{\beta})$ $1.91-1.92 \ (m, H_{\beta})$ C(8) $131.3 \ (s)$	
$2.43-2.44 \ (m, H_{\beta})$ $1.91-1.92 \ (m, H_{\beta})$ C(8) $131.3 \ (s)$	26.5 (t)
4262()	135.0 (s)
C(9) 136.2 (s)	135.1 (s)
C(10) 38.7 (s)	38.5 (s)
CH ₂ (11) 2.82 (dd, $J = 15.0, 6.2, H_a$), 33.4 (t) 3.10-3.12 (m, H _a),	33.8 (t)
1.78 $(t, J = 6.3, H_{\beta})$ 1.82 – 1.83 (m, H_{β})	
CH(12) 4.83 $(dd, J=6.6, 5.0)$ 78.4 (d) 5.06 $(dd, J=6.6, 3.2)$	78.0(d)
C(13) 163.2 (s)	163.1 (s)
	186.4 (s)
C(15) 120.7 (s)	121.4 (s)
C(16) 175.4 (s)	175.5 (s)
Me(17) 2.21 (s) 9.6 (q) 2.11 (s)	9.8(q)
Me(18) $0.99(s)$ $28.6(q)$ $0.99(s)$	28.9(q)
$CH_2(19)$ 4.05 $(d, J=9.5)$, 75.6 (t) 3.96 $(d, J=9.6)$,	75.8 (t)
3.79 (d, J = 9.5) $3.70 (d, J = 9.6)$	
Me(20) $1.11(s)$ $19.0(q)$ $1.08(s)$	19.0(q)
CH(1') 5.09 $(d, J=7.9)$ 102.8 (d) 4.62 $(d, J=7.6)$	102.7(d)
CH(2') 5.92 $(t, J = 8.1)$ 75.8 (d) 5.03 $(t, J = 8.0)$	75.6 (d)
CH(3') 4.43 $(t, J=10.7)$ 76.5 (d) 3.72 $(t, J=7.6)$	76.4(d)
CH(4') $4.34 (t, J=9.0)$ $72.0 (d) 3.78-3.80 (m)$	71.7(d)
CH(5') 4.05 – 4.07 (m) 78.9 (d) 3.84 – 3.86 (m)	78.9(d)
CH(6') 4.39 $(dd, J = 12.0, 5.6)$, 62.7 (t) 3.52 $(dd, J = 11.6, 1.8)$,	62.6 (t)
4.61 $(dd, J = 12.0, 2.2)$ 3.83 $(dd, J = 11.6, 5.2)$	
C(7'') 166.2 (s)	167.0 (s)
C(1'') 120.9 (s)	121.4 (s)
CH(2'',6'') 7.75 $(s, 2 H)$ 108.7 (d) 7.35 $(s, 2 H)$	108.6 (d)
	148.5 (s)
	141.8 (s)
MeO-C(3'',5'') 3.78 $(s, 6 H)$ 56.5 (q) 3.89 $(s, 6 H)$	T-11.0 (2)

 $[^]a)$ The assignments were based on $^1H,^1H\text{-COSY},$ HMQC, and HMBC experiments. $^b)$ Recorded in $C_5D_5N.$ $^c)$ Recorded in CD_3OD.

group was located at C(19) and that the substituted benzoyl moiety was positioned at C(2'). As in the case of **1**, the relative configuration of **2** was deduced by a NOESY experiments. Thus, curvifloruside B (**2**) was identified as $(4\alpha.5\beta.10\alpha.14\alpha)-14.19$ -

dihydroxyabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxyben-zoyl)- β -D-glucopyranoside]¹).

Curvifloruside C¹) (**3**) was obtained as an amorphous solid. Its molecular formula was determined as $C_{35}H_{44}O_{13}$ on the basis of the quasimolecular-ion peak at m/z 671.2714 ($[M-H]^-$) in the HR-FAB-MS (neg.). The IR spectrum showed the presence of OH groups (3441 cm⁻¹), an α,β -unsaturated γ -lactone (1732 cm⁻¹), and an aryl group (1612, 1549, and 1461 cm⁻¹). The ¹H-NMR spectrum ($Table\ 2$) displayed the signals of three quaternary Me groups at $\delta(H)\ 0.99$, 1.11, and 2.11 (each s), two MeO groups at 3.89 (s, 6 H), one CH-O group at 5.06 (dd, J = 6.6, 3.2 Hz), and two aromatic H-atoms at 7.35 (s). The comparison of the ¹³C-NMR data of **3** and **2** ($Table\ 2$) showed that the signal of C(14) of **3** was at δ 186.4 instead of δ 70.0 as observed in **2**, indicating that C(14) in **3** was a C=O C-atom. On the other hand, the correlations $\delta(H)\ 4.62\ (H-C(1')))/\delta(C)\ 75.8$ (t, C(19)) and $\delta(H)\ 5.03\ (H-C(2'))/\delta(C)\ 167.0\ (C(7''))$ were observed in the HMBC experiments, indicating that the glucosyl group was located at C(19) and the benzoyl moiety at C(2'), respectively (Fig. 2). Thus, curvifloruside C (**3**) was elucidated as $(4\alpha,5\beta,10\alpha)$ -19-hydroxy-14-oxoabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxybenzoyl)- β -D-glucopyranoside]¹).

HMBC ROESY

Fig. 2. Key HMBC and ROESY correlations of 3

Compound **4** was obtained as an amorphous solid. Its molecular formula was determined as $C_{20}H_{28}O_3$ on the basis of the molecular-ion peak at m/z 316.2118 (M^-) in the HR-FAB-MS (neg.). The IR spectrum showed the presence of OH groups (3441 cm⁻¹) and an α,β -unsaturated γ -lactone (1732 cm⁻¹). In comparison with the NMR of jolkinolide E (**11**) [10], the presence of a CH₂OH group (δ (H) 3.26 and 3.60 (each d, J = 11.3 Hz, 1 H); δ (C) 64.5) and the lack of one Me group in **4** (**11**: δ (H) 0.86 (Me(19)); δ (C) 22.0) were the main differences. Moreover, the correlations of the signals at δ (H) 3.26 and 3.60 with those at δ (C) 55.3 (C(5)), 18.4 (C(20)), and 40.3 (C(4)) confirmed the presence of OH–C(19). Therefore, the structure of **4** was elucidated as 19-hydroxyjolkinolide E¹).

Curvifloruside D1) (5) was obtained as a white solid. Its molecular formula was determined as $C_{21}H_{32}O_7$ on the basis of the quasimolecular-ion peak at m/z 395.2065 $([M-H]^-)$ in the HR-FAB-MS (neg.). The glycopyranosyl group of 5 was indicated by anomeric CH resonances at $\delta(H)$ 5.11 (d, J = 7.8 Hz) and $\delta(C)$ 103.9 and by its fragment-ion peaks at 395 ($[M - H]^-$) and 233 ($[M - H - 162]^-$) in its FAB-MS (neg.). The ¹H-NMR data of 5 indicated the presence of four quaternary Me groups at $\delta(H)$ $0.99, 1.63, 1.73, \text{ and } 2.15 \text{ (each } s) \text{ and two olefinic H-atoms at } \delta(\text{H}) 6.08 \text{ and } 5.69 \text{ (each } s)$ s). Besides the signals of the β -D-glucopyranosyl group, fifteen C-atom signals were observed in the ¹³C-NMR spectrum, including those of four Me, two CH₂, and five CH groups (two olefinic CH), and of four quaternary C-atoms (one COOH and two olefinic C). The ¹H- and ¹³C-NMR signals of 5 were assigned by COSY and HMQC experiments. The ¹³C-NMR, together with the HMBC, indicated the presence of the sequence CH₂C(=O)CH=CMe₂ located at C(7) by the correlations δ (H) 2.76 (CH₂)/ $\delta(C)$ 48.3 (C(7)) (Fig. 3). Careful evaluation of the ¹H- and ¹³C-NMR data of 5 revealed that its structure possesses a sesquiterpene skeleton of the α -bergamotene (=2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene) type [11]. Its ¹H, ¹H-COSY plot showed the presence of a sequence CH-O-CH-CH=C. The HMBC experiment showed a correlation of the C-atom at $\delta(C)$ 77.7 (C(1)) with the anomeric glucosyl H-atom at $\delta(H)$ 5.11 (H-C(1')), suggesting that the glucose is attached to C(1). On the basis of the evidences mentioned above, the structure of curvifloruside D (5) was determined to be 9-oxo- α -bergamoten-1-yl β -D-glucopyranoside1).

Fig. 3. Key HMBC of 5

Curvifloruside E¹) (6) was obtained as a white solid. Its molecular formula was determined as $C_{24}H_{30}O_{10}$ on the basis of the quasimolecular-ion peak at m/z 477.1853 ($[M-H]^-$) in the HR-FAB-MS (neg.). The ¹H-NMR spectrum of 6 contained the signals for two *trans*-positioned olefinic H-atoms at δ 6.67 and 7.78 (each d, J = 16.0 Hz), five related aromatic H-atoms at δ 7.45 (dd, J = 8.0, 1.6 Hz, H-C(2",6")), 7.27 (t, J = 8.1 Hz, H-C(3",5")), and 7.42 (t, J = 8.1 Hz, H-C(4")), and two *cis*-positioned olefinic H-atoms at δ 4.96 and 6.36 (each d, d = 6.4 Hz). Comparison of the NMR data of 6 with those of harpagoside (13) indicated that their structures were similar [12]. The FAB-MS (neg.) of 6 with $[M-H]^-$ at m/z 477 suggested a lack of 16 mass units compared to that of 13. The presence of an additional CH₂ in 6 (δ (C) 30.0 (t)) and the absence of the signal at δ (C) 77.6 (t) of 13 were the main differences. On the basis of these evidences, 6 must be a deoxyharpagoside. This was confirmed by tH, tH-COSY, HMQC, and HMBC experiments (tHis was confirmed by tH, tH-COSY, HMQC, and HMBC experiments (tHis was confirmed by tH, tH-COSY, HMQC, and HMBC experiments (tHis was confirmed by tH, tH-COSY, HMQC, and HMBC experiments (tHis was confirmed by tH, tH-COSY, HMQC, and HMBC experiments (tHis was confirmed by tHis the structure of curvifloruside E (tHis was elucidated to be 6-deoxyharpagoside¹).

7 R = OH

Fig. 4. Key HMBC of 6 and 7

Curvifloruside F¹) (7) was obtained as a white solid. Its molecular formula was determined as $C_{24}H_{30}O_{11}$ on the basis of the quasimolecular-ion peak at m/z 493.1701 ($[M-H]^-$) in the HR-FAB-MS (neg.). The ¹H- and ¹³C-NMR spectra of 7 were similar to those of harpagoside (13), except for the shift of C(8) from δ (C) 88.8 in 13 to δ (C) 85.1 in 7 [12]. In the ¹H-NMR spectrum, the signal of H-C(6) was shifted from δ 3.75 (d, J = 3.8 Hz) in 13 to δ 4.28 (dd, J = 12.1, 6.6 Hz) in 7. The different coupling constants suggested an inverted configuration at C(6) (Fig. 4), leading to the structure of 6-epiharpagoside¹) (7) for curvifloruside F.

Besides the seven new compounds, eleven known compounds were isolated from the plant. Comparison of the physicochemical and NMR properties with the reported data allowed for their structures to be identified as phlogacantholide C (8) [9], phlogacantholide C diacetate (9) [9], phlogacanthoside B (10) [9], jolkinolide E (11) [10], caprarioside (12) [13], harpagoside (13) [12], 8-O-(4-hydroxycinnamoyl)harpagide (14) [14], 8-O-feruloylharpagide (15) [12], lup-20(29)-ene-3,23-diol (16)[15], acanthoside B (17) [14], and acetylmartynoside A (18) [16]. Among them, the sesquiterpene and iridoid glycosides were isolated for the first time from the genus of *Phlogacanthus*. These results are valuable for future investigations on the chemical components distribution and their bioactivity in species of the genus *Phlogacanthus*.

This work was supported by the *Natural Science Foundation* (20702055) and the *Yunnan Natural Science Foundation* (2006C0045Q). The authors are grateful to the analytical group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for measuring IR, NMR, and MS data.

Experimental Part

General. Column chromatography (CC): Qingdao silica gel (SiO₂, 200–300 mesh) and Sephadex LH-20. TLC: Qingdao precoated plates; eluents: MeOH/CHCl₃ 1:100, 1:50, 1:20, and 1:10, (for Fractions A), and MeOH/CHCl₃ 1:1 (for Fractions B). Optical rotation: Horiba-SEAP-300 sensitive polarimeter. UV Spectra: Shimazhu 210A spectrophotometer in MeOH; λ_{max} (log ε) in nm. IR Spectra: Bio-Rad-FTS spectrometer; in KBr pellets; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker-AM-400 or -DRX-500 spectrometer; in CDCl₃ or C₃D₅N; δ in ppm with ref. to the signal of CDCl₃ or C₅D₅N with Me₄Si as internal standard, J in Hz. MS: VG-AutoSpec-3000 spectrometer; in m/z (rel. %).

Plant Material. The roots of Phlogacanthus curviflorus (WALL) NEES were collected in July 2002 in Xishuangbanna, Yunnan, P. R. China. The plant material was identified by Dr. Jian-Ying Xiang. A voucher specimen was deposited with the State Key Laboratory of Phytochemistry and Plant Resources

in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China.

Extraction and Isolation. The air-dried roots (5.2 kg) were extracted twice with 90% EtOH/H₂O at r.t. The solvent was evaporated at $<50^\circ$ to give a deep-brown waxy residue which was suspended in H₂O and extracted with petroleum ether (3 × 2 l) and BuOH (3 × 2 l). The BuOH extract (103 g) was fractionated by CC (SiO₂ (1000 g), 200 – 300 mesh, MeOH/CHCl₃ 1:100, 1:50, 1:20, 1:10, 1:5, and 1:2, each 2 l) to afford several fractions. The second fraction (2.3 g) was purified by repeated CC (SiO₂, MeOH/CHCl₃ 1:100 and 1:50; then Sephadex LH-20, MeOH/CHCl₃ 1:1): 9 (18 mg) and 16 (451 mg). The third fraction (4.1 g) was purified by repeated CC (SiO₂, MeOH/CHCl₃ 1:50 \rightarrow 1:20; then Sephadex LH-20, MeOH/CHCl₃ 1:1): 8 (2.51 g) and 18 (82 mg). The forth fraction (7.8 g) was purified by CC (SiO₂, CHCl₃/MeOH 30:1 \rightarrow 2:1) to give Frs. A and B. After repeated CC (RP18 SiO₂, 80% MeOH/H₂O; then SiO₂, CHCl₃/MeOH 10:1 \rightarrow 4:1), Fr. A afforded 2 (71 mg), 3 (43 mg), and 6 (23 mg), and Fr. B gave 5 (8 mg) and 10 (42 mg). The fifth fraction (1.9 g) was purified by CC (SiO₂, CHCl₃/MeOH 20:1 \rightarrow 2:1; then Sephadex LH-20, MeOH: 4 (33 mg), 11 (6 mg), and 17 (17 mg). The sixth fraction (11.5 g) was purified by CC (SiO₂, CHCl₃/MeOH 20:1 \rightarrow 1:1) and then repeated CC (RP18 SiO₂, MeOH/H₂O 6:4, 4:1, and 9:1, each 1 l): 1 (376 mg), 7 (15 mg), 12 (198 mg), 13 (71 mg), 14 (18 mg), and 15 (176 mg).

Acidic Hydrolysis. A mixture of 1 (5 mg), MeOH (1.0 ml), and 2 M HCl (1.0 ml) was refluxed in a boiling water bath for 2 h. The hydrolysate was allowed to cool, diluted twofold with dist. H_2O , and partitioned between H_2O and AcOEt. The aq. layer was neutralized and concentrated to give a residue. Glucose was identified from the residue by TLC comparison (BuOH/AcOH/ H_2O 5:1:5, upper layer) with an authentic sample.

Curvifloruside $A = (4\alpha,5\beta,10\alpha,14\alpha)-14,19$ -Dihydroxyabieta-8,13(15)-dieno-16,12-lactone 19-(β -D-glucopyranoside) = rel-(4R,4 α S,7R,10 α R,11bR)-4-[(β -D-Glucopyranosyloxy)methyl]-2,3,4,4 α 5,6,7,10 α 11,11b-decahydro-7-hydroxy-4,8,11b-trimethylphenanthro[3,2-b]furan-9(1H)-one; 1): White powder. [α] $_{D}^{20} = -181 (c = 1.15, MeOH). UV: 220 (1.23). IR: 3430, 2892, 2850, 1735, 1636, 1380, 1074, 1037, 1017. <math>_{D}^{1}$ H- and $_{D}^{1}$ C-NMR: Table 1. FAB-MS (neg.): 493 (100, [M - H] $_{D}^{-}$), 331 (9, [M - H - 162] $_{D}^{-}$), 313 (25), 269 (10), 101 (27). HR-FAB-MS (neg.): 493.2448 ([M - H] $_{D}^{-}$, C_{26} H $_{37}$ O $_{9}^{-}$; calc. 493.2437).

Curvifloruside $B = (4\alpha,5\beta,10\alpha,14\alpha)-14,19$ -Dihydroxyabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxybenzoyl)- β -D-glucopyranoside] = rel-(4R,4aS,7R,10R,11bR)-2,3,4,4a,5,6,7,10a,11,11b-Decahydro-7-hydroxy-4-{{[2-O-(4-hydroxy-3,4-dimethoxybenzoyl)- β -D-glucopyranosyl]oxyhmethyl]-4,8,11b-trimethylphenanthro[3,2-b]furan-9(1H)-one; **2**): White powder. [α] $_{0}^{D0} = -79 \ (c = 1.0, MeOH)$. UV: 218 (1.62), 277 (0.69). IR: 3441 (OH), 2939, 2848, 1732 (C=O), 1715 (C=O), 1612, 1549, 1514, 1461, 1423, 1337, 1220, 1116, 1079, 1033, 1018. 1 H- and 13 C-NMR: Table 2. FAB-MS (neg.): 673 (100, [M - H] $^{-}$). HR-FAB-MS (neg.): 673.2869 ([M - H] $^{-}$, C_{35} H₄₅ O_{13} ; calc. 673.2860).

Curvifloruside C (= $(4\alpha,5\beta,10\alpha)$ -19-Hydroxy-14-oxoabieta-8,13(15)-dieno-16,12-lactone 19-[2-O-(4-hydroxy-3,5-dimethoxybenzoyl)- β -D-glucopyranoside] = rel-(4R,4aS,10aR,11bR)-1,2,3,4,4a,5,6,10a, 11,11b-Decahydro-4-{{[2-O-(4-hydroxy-3,4-dimethoxybenzoyl)- β -D-glucopyranosyl]oxy}methyl}-4,8, 11b-trimethylphenanthro[3,2-b]furan-7,9-dione; **3**): White powder. [α]_D²⁰ = -56 (c = 0.7, MeOH). UV: 221 (1.71), 285 (0.72). IR: 3446 (OH), 2941, 2842, 1735 (C=O), 1718 (C=O), 1614, 1543, 1517, 1463, 1221, 1118, 1083, 1016. 1 H- and 13 C-NMR: Table 2. FAB-MS (neg.): 671 (100, [M – H] $^{-}$), 491 (15), 329 (42), 197 (45). HR-FAB-MS (neg.): 671.2714 ([M – H] $^{-}$, C₃₅H₄₃O $^{-}$ ₁₃; calc. 671.2703).

19-Hydroxyjolkinolide E (= rel-(4R,4aS,10aR,11aR,12bS)-2,3,4,4a,5,6,10a,11,11a,11b-Decahydro-4-(hydroxymethyl)-4,8,11b-trimethylphenanthro[3,2-b]furan-9(1H)-one; 4): White powder. IR: 3441, 1732, 1280, 1067. 1 H- and 13 C-NMR: Table 1. EI-MS: 316 (100, M^{+}). HR-EI-MS: 316.2118 (M^{+} , C_{20} H₂₈O $_{3}^{+}$; calc. 316.2038).

Curvifloruside $D = 9-Oxo-\alpha$ -bergamoten-1-yl β -D-Glucopyranoside = $1-[4-(\beta$ -D-Glucopyranosyloxy)-2,6-dimethylbicyclo[3.1.1]hept-2-en-6-yl]-4-methylpent-3-en-2-one; **5**): White powder. $[a]_D^{20} = -30.0$ (c = 0.35, MeOH). UV: 227. IR: 3421 (OH), 2929, 2873, 1757 (C=O), 1677 (C=C), 1620 (C=C), 1446, 1377, 1076, 1036. 1 H-NMR (C_5 D₅N, 400 MHz) 1): 4.75 (br. s, H-C(1)); 5.69 (br. s, H-C(2)); 2.32 (dd, J = 6.2, 2.2, H-C(4)); 1.77 (t, J = 9.0, 1 H-C(5)); 2.25 (m, H-C(5)); 2.88 (m, H-C(6)); 2.76 (s, 2 H-C(8)); 6.08 (s, H-C(10)); 2.15 (s, Me(12)); 1.73 (s, Me(13)); 0.99 (s, Me(14)); 1.63 (s, Me(15)); 5.11 (d, J = 78, H-C(1')); 4.05 (m, H-C(2')); 3.98 (m, H-C(3')); 4.30 (m, H-C(4')); 4.27 (m, H-C(5')); 4.40 (dd, J = 1.00

11.7, 5.1, 1 H–C(6')); 4.54 (dd, J = 11.7, 2.2, 1 H–C(6')). ¹³C-NMR (C_5D_5N , 100 MHz)¹): 77.7 (d, C(1)); 117.8 (d, C(2)); 147.8 (s, C(3)); 46.4 (d, C(4)); 29.4 (t, C(5)); 45.4 (d, C(6)); 48.3 (s, C(7)); 51.9 (t, C(8)); 200.2 (s, C(9)); 125.6 (d, C(10)); 154.2 (s, C(11)); 20.6 (q, C(12)); 27.4 (q, C(13)); 18.0 (q, C(14)); 22.9 (q, C(15)); 103.9 (d, C(1')); 75.5 (d, C(2')); 78.5 (d, C(3')); 71.8 (d, C(4')); 78.6 (d, C(5')); 62.9 (d, C(6')). FAB-MS (neg.): 395.2065 ([d – H] $^-$, C₂₁H₃₁O $_7$; calc. 395.2069).

Curvifloruside E (=6-Deoxyharpagoside = (2E)-3-Phenylprop-2-enoic Acid rel-(1R,4aR,7R,7aR)-1-(β -D-Glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-4a-hydroxy-7-methylcyclopenta[c]pyran-7-yl Ester; **6**): White powder. 1 H-NMR (CD₃OD, 400 MHz) 1): 6.26 (s, H-C(1)); 6.36 (d, J = 6.4, H-C(3)); 4.96 (d, J = 6.4, H-C(4)); 1.16-1.18 (m, H_a -C(6)); 1.28-1.30 (m, H_{β} -C(6)); 1.74-1.76 (m, H_a -C(7)); 2.17-2.18 (m, H_{β} -C(7)); 3.01 (s, H-C(9)); 1.48 (s, Me(10)); 7.45 (d, J = 8.2, H-C(2"), H-C(6")); 7.27 (t, J = 8.2, H-C(3"), H-C(5")); 7.42 (t, J = 8.3, H-C(4")); 7.78 (d, J = 16.0, H-C(7")); 6.67 (d, J = 16.0, H-C(8")); 5.01 (d, J = 7.8, H-C(1')); 3.76-3.78 (m, H-C(2')); 3.69-3.71 (m, H-C(3')); 3.52-3.54 (m, H-C(4')); 3.71-3.72 (m, H-C(5')); 3.86 (dd, J = 11.8, 2.0, 1 H-C(6')); 4.07 (dd, J = 11.8, 5.6, 1 H-C(6')). 13 C-NMR (CD₃OD, 100 MHz) 11 : 94.3 (d, C(1)); 142.9 (d, C(3)); 107.2 (d, C(4)); 73.0 (s, C(5)); 30.0 (t, C(6)); 43.8 (t, C(7)); 88.0 (s, C(8)); 55.8 (d, C(9)); 22.3 (q, C(10)); 134.8 (s, C(1")); 129.2 (2d, C(2",6")); 130.0 (2d, C(3",5")); 130.5 (d, C(4")); 119.4 (d, C(7")); 144.9 (d, C(8")); 166.4 (s, C=O); 99.3 (d, C(1')); 75.2 (d, C(2')); 78.5 (d, C(3')); 71.8 (d, C(4')); 78.8 (d, C(5')); 63.0 (t, C(6')). FAB-MS (neg.): 477 (100, [M-H]^-). HR-FAB-MS (neg.): 477.1853 ([M-H]^-, C₂₄H₂₉O₁₀; calc. 477.1761).

REFERENCES

- [1] Jiangshu New College of Medicine, 'Zhong Yao Da Ci Dian' ('The Dictionary of Chinese Crude Drugs'), Shanghai Science and Technology Press, Shanghai, 1986, Vol. 1, p. 500.
- [2] J. Q. Hu, H. B. Chui, 'Flora Yunnanica', Science Press, Beijing, 2006, Vol. 16, p. 741.
- [3] Z. Y. Wu, T. Y. Zhou, P. G. Xiao, 'Xinhua Bencao Ganyao' ('New China Compendium of Materia Medica'), Shanghai Science and Technology Press, Shanghai, 1991, Vol. 2, p. 488.
- [4] A. K. Barua, S. Biswas, A. Patra, K. A. Basu, S. K. Panda, A. Ghosh, *Phytochemistry* 1987, 26, 491.
- [5] A. K. Barua, M. K. Chowdhury, S. Biswas, C. D. Gupta, S. K. Banerjee, S. K. Saha, A. Patra, A. K. Mitra, *Phytochemistry* 1985, 24, 2037.
- [6] H. J. Chowdhery, G. D. Pal, G. S. Giri, Nord. J. Bot. 1993, 13, 419.
- [7] R. D. Yadav, J. C. S. Kataky, R. Mathur, Indian J. Chem., Sect. B 1999, 38, 248.
- [8] R. D. Yadav, J. C. S. Kataky, R. Mathur, Indian J. Chem., Sect. B 1998, 37, 1214.
- [9] X. H. Yuan, B. G. Li, X. Y. Zhang, H. Y. Qi, M. Zhou, G. L. Zhang, J. Nat. Prod. 2005, 68, 86.
- [10] A. R. Lal, R. C. Cambie, P. S. Rutledge, P. D. Woodgate, Phytochemistry 1990, 29, 2239.
- [11] H. Oh, J. B. Gloer, C. A. Shearer, J. Nat. Prod. 1999, 62, 497.
- [12] Y. M. Li, S. H. Jiang, W. Y. Gao, D. Y. Zhu, Phytochemistry 1999, 50, 101.
- [13] M. Heinrich, H. Rimpler, Planta Med. 1989, 55, 626.

- [14] C. Wang, Z. Jia, Phytochemistry 1997, 45, 159.
- [15] Sergio R. Peraza-Sánchez, Norma E. Salazar-Aguilar, L. M. Peña-Rodríguez, *J. Nat. Prod.* **1995**, 58, 271.
- [16] S. G. Leitão, M. A. C. Kaplan, F. Monache, J. Nat. Prod. 1994, 57, 1703.

Received July 15, 2008